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Abstract. Fraction of green vegetation, fg, and green leaf area index, L g , are
needed as a regular space-time gridded input to evapotranspiration schemes in
the two National Weather Service (NWS) numerical prediction models Ð regional
Eta and global medium range forecast. This study explores the potential of
deriving these two variables from the NOAA Advanced Very High Resolution
Radiometer (AVHRR) normalized di� erence vegetation index (NDVI) data.
Obviously, one NDVI measurement does not allow simultaneous derivation of
both vegetation variables. Simple models of a satellite pixel are used to illustrate
the ambiguity resulting from a combination of the unknown horizontal ( fg ) and
vertical (L g ) densities. We argue that for NOAA AVHRR data sets based on
observations with a spatial resolution of a few kilometres the most appropriate
way to resolve this ambiguity is to assume that the vegetated part of a pixel is
covered by dense vegetation (i.e., its leaf area index is high), and to calculate
fg= (NDVI-NDVIo )/(NDVI2-NDVIo ), where NDVIo (bare soil ) and NDVI2
(dense vegetation) are speci® ed as global constants independent of vegetation/soil
type. Global (0 1́5 ß )2 spatial resolution monthly maps of fg were produced from
a 5-year NDVI climatology and incorporated in the NWS models. As a result,
the model surface ¯ uxes were improved.

1. Introduction

Modern land surface parameterizations (LSP) in numerical weather prediction
and general circulation models require speci® cation of two major vegetation charac-
teristics Ð vegetation type and amount (see review by Avissar and Verstraete 1990).
Vegetation type is usually prescribed from the available global vegetation maps
based on ground observations (e.g., Matthews 1995). Vegetation amount is para-
meterized through the fractional area of the vegetation occupying each model grid
cell ( horizontal density) and the leaf area index, i.e., the number of leaf layers of the
vegetated part (vertical density).

The evapotranspiration (as well as photosynthesis) is controlled by green
vegetation fraction, fg , and green leaf area index, L g . Improved LSPs are being tested
in the operational regional (Eta) and global medium range forecast (MRF) models
at the National Centers for Environmental Prediction (NCEP) of the National
Weather Service (NWS) (Chen et al. 1996, H.-L. Pan, personal communication).
These LSPs calculate evaporation as a weighted average, with fg as the weighting
factor, of the evaporation from soil and the evapotranspiration from vegetation, the
latter being dependent on the number of vegetation layers, L g . Numerical models,
that used modern LSPs, have shown sensitivity of the predicted ¯ uxes to fg

(Jacquemin and Noilhan 1990 ) and L g (Chase et al. 1996). However, global/seasonal
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distributions of these vegetation variables are unknown, so that rather arbitrary
tabulated values have often been used based on ground observations over di� erent
vegetation types (Chen et al. 1996, Viterbo and Beljars 1995). The only way to
specify fg and L g for large areas, e.g., for the USA in the Eta model or for the globe
in the MRF model, is from satellite, and that was the motivation of the present study.

Global data sets containing information on land surface characteristics have been
produced from the Advanced Very High Resolution Radiometer (AVHRR) onboard
NOAA satellites (see reviews in Townshend 1994, Gutman 1994, Prince and Goward
1996). Among various AVHRR-derived vegetation indices (Huete et al. 1994 ), the
most frequently used for global applications is the normalized di� erence vegetation
index (NDVI)= (r2 Õ r1 )/(r2 + r1 ) , where r1 and r2 are re¯ ectance measurements
in AVHRR channels 1 (0 6́3 mm) and 2 (0 8́5 mm). The use of vegetation indices
presently remains the only practical approach to global analysis of AVHRR multi-
temporal data on vegetation owing to partial cancellation of the bi-directional,
atmospheric and other interfering e� ects in satellite radiances.

The main goal of the current work was to explore the potential of deriving the
above vegetation variables from NDVI for use in numerical models, speci® cally for
the two NCEP models. A simple procedure was analysed and used to derive global
(0 1́5 ß )2 spatial resolution monthly fg maps from the global AVHRR NDVI data.

2. Sub-pixel variability and modelling at-sensor signal

The same NDVI signal may result from di� erent sub-pixel structures of a satellite
pixel (Price 1992). Figure 1 shows possible combinations of horizontal and vertical
densities and their respective models, which are discussed below.

2.1. Uniform-pixel model
Some authors consider pixels fully covered by green vegetation ( fg=1) with a

certain vertical density ( ® gure 1, bottom). In this case the signal, attenuated by L g

layers of vegetation, is often presented based on a modi® ed Beer’s law (Baret and
Guyot 1991, Kustas et al. 1993a, Choudhury et al. 1994, Sellers et al. 1996):

NDVI=NDVI
2

Õ (NDVI
2

Õ NDVIo ) exp (Õ kL g ) (1 )

Figure 1. Schematic representation of satellite sensor pixel models.
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where NDVIo and NDVI
2

, are the signals from bare soil (L g � 0) and dense green
vegetation (L g � 2 ) respectively, and k is the extinction coe� cient. Note that the
derivation of L g requires knowledge of three constants: NDVIo , NDVI

2
, and k, the

latter characterizing the vegetation type (e.g., Choudhury et al. 1994).

2.2. Mosaic-pixel models
Other investigators assume that a pixel has a p̀atchy’ (mosaic) structure (Kerr

et al. 1992, Gillies and Carlson 1995, Wittich and Hansing 1995, Valor and Caselles
1996). Three possible cases are illustrated by the three upper panels of ® gure 1.

In the case of dense vegetation ( ® gure 1, second panel from the bottom), an
assumption is made that the density of the vegetated part of the pixel is very high
(L g � 2, with NDVI � NDVI

2
) so that

NDVI= fg NDVI
2

(1 Õ fg ) NDVIo (2 )

Since k does not appear in this formulation, the number of constants needed to
determine fg is two instead of three as in the uniform-pixel model.

In the case of non-dense vegetation ( ® gure 1, third panel from the bottom), i.e.,
L g%2, a combination of equations (1) and (2) yields:

NDVI= fg NDVIg + (1 Õ fg ) NDVIo (3 )

where NDVIg=NDVI
2

(NDVI
2

Õ NDVIo ) exp(Õ kL g ) . Here, the variable L g

has a meaning di� erent from the conventional de® nition of the green leaf area
index, which is t̀he area of green leaves per unit area of ground’ (e.g., Curran
1983, Price 1992). In contrast, we de® ne L g as a number of leaf layers over the
vegetated part of the pixel, referred to as a c̀lump’ leaf area index by Choudhury
et al. (1994). L g can never be <1 in the mosaic-pixel formulations, whereas the
è� ective’ leaf area index ( fg L g ) may be <L g . For example, if the vegetated part
covers only one half of the pixel ( fg=0 5́ ) and contains only one vegetation layer
(L g=1), then the e� ective leaf area index of the pixel is ( fgL g )=0 5́. In reality,
there may exist several vegetation types within a pixel, and their vertical densities
may vary, so that the observed NDVI is a weighted average of the NDVIs
from di� erent vegetated t̀iles’ of the vegetated (NDVIgi) and non-vegetated
(NDVIo ) parts ( ® gure 1, top): NDVI=S fgi NDVIgi+ (1 Õ S fgi)NDVIo , where
NDVIgi=NDVI

2
Õ (NDVI

2
Õ NDVIo ) exp (Õ k iL gi ) and the summation is over all

the vegetated t̀iles’ within the pixel with the corresponding fractions fgi .

2.3. Choosing an appropriat e pixel model for AV HRR
The choice between the uniform- and mosaic-pixel models would depend upon

spatial resolution of satellite sensor data and the structure of vegetation, the latter
being geographic region- and vegetation type-speci® c. In processing global data, it is
di� cult to identify and adjust the retrieval model, and therefore simpli® ed approaches
are often used. For example, Sellers et al. (1996) and Nemani et al. (1996) derived
L g assuming fg=1 for each satellite sensor pixel. It is plausible to assume that a
pixel is more uniform or mosaic as the spatial resolution increases or degrades,
respectively (Price 1992 ). For AVHRR global data sets, produced from observations
with a spatial resolution of a few kilometres, derivation of fg keeping L g prescribed
and using the variable density model seems most appropriate. However, derivation
of several unknowns (subpixel values) from just one measurement is infeasible
(note that temporal analysis could be used to tackle this problem in local studies
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(e.g., Fischer 1994)). The two-parametric non-dense vegetation model provides a
reasonable trade-o� , describing the process simply yet realistically. Recall that the
NCEP’s models use this same two-parametric description of vegetation in even larger
model grid cells (30± 100 km), which makes us more con® dent of its validity on
AVHRR pixel scales which are typically an order of magnitude less. The problem
of deriving two unknownsÐ fg and L g Ð from one NDVI measurement is still
ambiguous and requires an additional constraint. Using two re¯ ectances and/or their
combination with thermal IR data could potentially resolve that ambiguity (e.g.,
Jasinski 1990, Carlson et al. 1990, Hanan et al. 1991, Price 1992, 1993, Choudhury
et al. 1994, Gillies and Carlson 1995, Valor and Caselles 1996). However, these
methods are applicable only to studies for restricted space-time scales, when
atmosphere and sun-view geometry are either non-variable or can be corrected for.
This is not considered in the present study, which is directed at global applications.

2.4. Resolving the ambiguity : the dense vegetation model
Figure 2 shows that the NDVI, calculated from equation (3) as a function of fg

and L g , is their unresolved combination. This implies that one NDVI measurement
does not allow simultaneous derivation of fg and L g . This complexity, discussed by
Price (1992, 1993), can be compared to remote sensing of clouds when the satellite
signal is a combined e� ect of horizontal (fractional cover, analogue of fg ) and vertical
(cloud optical thickness, analogue of kL g ) densities. One way to resolve this ambiguity
is to assume that these two variables are coupled, as it was done in the pioneering
Deardor� ’s (1976) LSP. An assumption of a coherent seasonal cycle in the vertical
and horizontal vegetation densities seems reasonable. Yet, no su� cient basis exists
for reliable relationships, which are expected to be site- and morphology-speci® c.

Alternatively, one can prescribe one of the two variables and derive the second.
Equation (1) and ® gure 2 provide additional rationale why one would rather

Figure 2. Fraction of green vegetation as a function of NDVI and leaf area index. The mosaic
non-dense vegetation model is also shown.
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prescribe L g , and derive fg : the exponential dependence NDVI(L g ) s̀aturates’ after
a certain threshold, L

sat
g , and NDVI becomes insensitive to L g . The saturation

threshold, L
sat
g , depends on the vegetation type, characterized by the extinction

coe� cient, k. Carlson et al. (1990) reported that for ground observations
2<L

sat
g <6. This circumstance is unfortunate for the L g estimate but favourable

for the fg estimate, since the function fg (NDVI) in ® gure 2 is strong and almost
unambiguous for L g>L

sat
g . By prescribing fg , the value of L g can be potentially

derived when 1<L g<L
sat
g . But even then, the derivation of L g requires the coe� cient

k, which itself is uncertain. The derivation of fg from NDVI data is, thus, better
founded and should be more accurate than L g .

To derive fg , a value of L g > 1 has to be prescribed. For the present study, we
have chosen L g=2. In practice, this means that L g is high enough to allow neglecting
the exponent term in equation (1): exp (Õ kL g )=0. Figure 2 shows that for k =1
the exponent term becomes negligible when L g>3. As a result, the formulation
reduces to the dense vegetation model.

3. Results

3.1. Global production of fg maps
The values of NDVIo and NDVI

2
, needed for deriving fg from equation (2 )

should be region- and season-speci® c, since they depend on the soil and vegetation
types and the vegetation chlorophyll content (e.g., Price 1992, Huete et al. 1994),
hence they are to be derived from the data (e.g., Kerr et al. 1992 ). They can be
estimated as minimum and maximum NDVI, NDVImin and NDVImax , in each space-
time box, assuming one can ® nd bare-soil and fully vegetated pixels within each box.
Sellers et al. (1996), for example, de® ned NDVIo and NDVI

2
, as the lower and

upper 2± 5% NDVI for each biome.
The following exercise illustrates our attempt to apply this idea to GVI data.

Figure 3 shows the results of a cluster analysis of about 650 000 points from GVI
(0 1́5 ß )2 annual data using annual minimum NDVImin , and maximum, NDVImax , as
the clustering variables in the nearest centroid sorting method (SAS 1989). (Analysis
shows that the results are insensitive to the number of clusters Ð in this example,
seven were used.) In the areas with highly seasonal vegetation, there is a good chance
that during the course of the year we can observe bare soil pixels and those that are
fully covered with dense vegetation. This means that both NDVIo and NDVI

2
, may

Figure 3. The g̀lobal triangle’ of surface types: the results of cluster analysis using NDVI’s
annual maximum and minimum.
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be reliably derived from data itself over those areas. In some areas, such as deserts
and evergreen vegetation, either bare soil or fully vegetated pixels are observed
throughout the year, respectively. In both cases, only one of the two constants
(NDVIo and NDVI

2
) can be reliably derived. The three major clusters are shown

as the corners of a global triangle’ in ® gure 3 (cf. with DeFries and Townshend 1994),
with the radii representing RMS standard deviation for the clusters. Figure 4 shows
a global view of the spatial distribution of these clusters using a red-green composite,
with red as the annual range NDVImax- NDVImin and green as the annual maximum
NDVImax . (This representation of surface types is similar to earlier works by Tucker
et al. (1985) and Townshend et al. (1985 ).) Figures 3 and 4 show that there are many
intermediate cases, in which it may be di� cult to ® nd the bare soil or fully vegetated
pixels for regional adjustment of NDVIo and NDVI

2
(cf. with Valor and Caselles

1996). Therefore, we prescribe NDVIo=0 0́4 (with so# 0 0́3) and NDVI
2

=0 5́2
(with s

2
# 0 0́3) as seasonally- and geographically invariant constants, which

correspond to the NDVImin and NDVImax of the desert and evergreen clusters,
respectively. Monthly maps of fg ( ® gure 5) are then produced from the 5-year NDVI

Figure 4. A red± green composite of NDVI’s annual range (red ) and maximum (green). The
major clusters are bright green (evergreen) , bright yellow (highly seasonal), and dark
brown (desert). The areas with scarce vegetation that are covered by snow during
winter are rendered in reddish colours.

Figure 5. Seasonal cycle of fractional vegetation. The snow mask is described in Gutman
et al. (1995).
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climatology (Gutman et al. 1995 ) with a (0 1́5 ß )2 spatial resolution using the dense
vegetation mosaic-pixel model (equation 2) resolved for fg , which was restricted to
0± 1 interval:

fg= (NDVI Õ NDVIo )/(NDVI
2

Õ NDVIo ) (4 )

3.2. Error analysis
3.2.1. T he fg Ð NDV I linearity

The validity of the linear relationship (2) has been con® rmed by Ormsby et al.
(1987), Carlson et al. (1990 ), Phulpin et al. (1990 ), Myneni et al. (1992 ), Kustas
et al. (1993b), and Wittich and Hansing (1995 ). According to these studies, the non-
linearity of the relationship fg (NDVI) was beyond the detectability over a wide
range of vegetation densities. Wittich and Hansing (1995) estimate that the residual
error of the linear regression does not exceed s #0 1́, which represents the worst
case error in fg , associated with the use of equation (2).

3.2.2. T he dense vegetation assumption
Myneni et al. (1992) pointed out that the slope of this linear relationship depends

on L g . This conclusion is in agreement with ® gure 2 which shows that the error in
fg resulting from the d̀ense vegetation’ assumption is negligible when fg � 0
and gradually increases with fg . However, even for fg � 1, the error is s <0 1́
when L g>3. The greatest errors may occur when 1<L g<3 over areas with
NDVI# 0 2́5± 0 5́0 Ð presumably at the beginning and end of the growing season. In
contrast, the most reliable results on fg are expected at the peak of the growing
season, when L g is at its maximum, and before the growing season, when NDVI
is small.

3.2.3. Variability in NDV Io and NDVI
2

It is known that there is an impact of soil re¯ ectance on the relationship between
fg and NDVI, through the variable NDVIo in equation (2) (e.g., Jasinski 1990,
Mineny et al. 1992, Huete et al. 1994). On the other hand, NDVI

2
(saturation

greenness) is expected to depend upon the type, geometric structure, and chlorophyll
content and physiology (mesophyll ) of vegetation (Curran 1983, Carlson et al. 1990).
Additionally, NDVI depends upon atmospheric conditions and sun-view geometry
of observations. Assuming that all these factors result in random errors in NDVIo

and NDVI
2

, so and s
2

, the RMS error of the fg estimate is:

s ={[ fgs
2

]2+ [(1 Õ fg )so ]2}1/2
/(NDVI

2
Õ NDVIo ) (5 )

For fg � 0 and fg � 1, the worst case error 3s is about 0 1́8, and for fg=0 5́, it
is #0 1́2.

3.2.4. T he total error
Summarizing, the worst case error might amount to about 0 3́5, which implies a

reliable distinction of three gradations. In general, we can expect more than three
gradations for fg owing to errors smaller than those estimated above and their
partial compensation. Note that the derived fg is also in¯ uenced by the imperfection
of the NDVI data: errors from residual cloud contamination and atmospheric/

angular/shadowing e� ects. These e� ects, compounded with the seasonal cycle and
global variability in illumination conditions, introduce systematic biases since
NDVI

2
and NDVIo are constant. For example, tropical forests, where fg is expected

to be 1, are often the areas of persistent clouds, and, as result, the value of fg may
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be somewhat underestimated. All of the above dictates the necessity for improving
the NDVI data to minimize the above biases that directly propagate into the fg

data set.

3.3. T he relative merit of the satellite-derived fg product
Despite the above uncertainties, the fg satellite product is deemed to be a realistic

speci® cation of the seasonal global vegetation cover distribution that ® ts the current
requirements of NCEP LSPs. Its validation for the globe is di� cult, if feasible at all,
as with many other land surface products, but that is not the major issue. Of greater
relevance here is the consistency of the derived product with the simpli® ed description
of complicated air-surface interactions in present LSPs. Note that both fg and L g

are merely e� ective model variables that could yield good results in a model and
still disagree with conventional data on those variables. The measure that quanti® es
the e� ect of the incorporation of regional seasonal changes in vegetation cover is
the model surface ¯ uxes and the proportion of the latent and sensible heat ¯ uxes
in the heat balance. The ultimate criterion of the merit of any input in an LSP is,
of course, improvement of the weather forecast. Presently, the monthly maps of
green vegetation fraction have been incorporated in NCEP models and the pre-
liminary results are encouraging. Betts et al. (1997) used Eta model 3-D reruns to
show that the use of the present fg data produce model surface ¯ uxes closer to the
observations. More sensitivity studies are planned to assess the impact of the
uncertainties in satellite sensor data on the model ¯ uxes. Unfortunately, testing
the impact of the newly incorporated fg is hindered by the prohibitive expenses of
operational model runs.

4. Conclusion

The main goal of the current work was to produce monthly data of green
vegetation fraction, fg , for use in numerical models, speci® cally for NCEP forecast
models. A simple procedure was analysed and used to derive global (0 1́5 ß )2 spatial
resolution monthly fg maps from the NOAA GVI data set. We showed that the
problem of fg estimation from AVHRR data is underdetermined and proposed to
use a dense vegetation assumption to resolve the ambiguity. Preliminary results on
incorporation of the vegetation fraction maps in NWS numerical weather prediction
models show an improvement of the predicted surface ¯ uxes. Our data specify a
more realistic and consistent model input than the previously prescribed spatially
and temporally invariant vegetation fraction. In considering the currently available
satellite-derived global ® elds of fg ( the present study) and L g (Sellers et al. 1996,
Nemani et al. 1996 ), one must bear in mind that both are obtained from one
variable Ð NDVIÐ and are nothing more than two di� erent ways to interpret the
same satellite sensor data. Therefore, they cannot be regarded as two independent
pieces of information on the vegetation cover and should not be used in tandem
within the same LSP. With present AVHRR data, either independently prescribed
L g or established fg Ð L g relationships are recommended as pragmatic steps forward.
Using data from other sensors with high spatial resolution would allow application
of the uniform-pixel model to derive L g assuming fg=1, with further aggregation
of high spatial resolution satellite retrievals into model-size grid cells (#30± 100 km).
The required spatial resolution of satellite sensor data has to be investigated before
recommendations can be given. The key issue remains increasing the quality of
satellite data sets with better cloud screening and angular/atmospheric corrections
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applied (Prince and Goward 1996). Global data from other sensors with better
spectral characteristics and more complete angular sampling should be considered
(e.g., Roujean et al. 1997, Huete et al. 1994 ).

The fg data can be accessed using 140.90.197.192 anonymous ® le transfer protocol
(ftp), directory /pub/ggutman/frveg.
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